Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(14): 8214-8224, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557103

RESUMO

The emerging mycotoxins enniatins (ENNs) and the traditional mycotoxin deoxynivalenol (DON) often co-contaminate various grain raw materials and foods. While the liver is their common target organ, the mechanism of their combined effect remains unclear. In this study, the combined cytotoxic effects of four ENNs (ENA, ENA1, ENB, and ENB1) with DON and their mechanisms were investigated using the HepG2 cell line. Additionally, a population exposure risk assessment of these mycotoxins was performed by using in vitro experiments and computer simulations. The results showed that only ENA at 1/4 IC50 and ENB1 at 1/8 IC50 coexposed with DON showed an additive effect, while ENB showed the strongest antagonism at IC50 (CI = 3.890). Co-incubation of ENNs regulated the signaling molecule levels which were disrupted by DON. Transcriptome analysis showed that ENB (IC50) up-regulated the PI3K/Akt/FoxO signaling pathway and inhibited the expression of apoptotic genes (Bax, P53, Caspase 3, etc.) via phosphorylation of FoxO, thereby reducing the cytotoxic effects caused by DON. Both types of mycotoxins posed serious health risks, and the cumulative risk of coexposure was particularly important for emerging mycotoxins.


Assuntos
Depsipeptídeos , Micotoxinas , Fosfatidilinositol 3-Quinases , Tricotecenos , Humanos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Células Hep G2 , Micotoxinas/toxicidade , Micotoxinas/análise
2.
Cell Death Dis ; 10(5): 329, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988280

RESUMO

Protein S-nitrosylation, the redox-based posttranslational modification of a cysteine thiol by the attachment of a nitric oxide (NO) group, is responsible for a variety of signaling effects. Dysregulation of S-nitrosylation may be directly linked to cancer apoptotic resistance and cancer therapy outcomes, emphasizing the importance of S-nitrosylation in cancer. Peroxiredoxin-2 (Prdx2), an antioxidant enzyme, plays an important role in the protection of cancer cells from oxidative radical damage caused by hydrogen dioxide (H2O2), which is a potential target for cancer therapy. Our studies showed that, as an endogenous NO carrier, S-nitrosoglutathione (GSNO) induced apoptosis in lung cancer cells via nitrosylating Prdx2. The nitrosylation of Prdx2 at Cys51 and Cys172 sites disrupted the formation of Prdx2 dimer and repressed the Prdx2 antioxidant activity, causing the accumulation of endogenous H2O2. H2O2 activated AMPK, which then phosphorylated SIRT1 and inhibited its deacetylation activity toward p53 in A549 cells or FOXO1 in NCI-H1299 cells. Taken together, our results elucidate the roles and mechanisms of Prdx2 S-nitrosylation at Cys51 and Cys172 sites in lung cancer cells apoptosis and this finding provides an effective lung cancer treatment strategy for managing aberrant Prdx2 activity in lung cancers.


Assuntos
Apoptose/efeitos dos fármacos , Peroxirredoxinas/metabolismo , S-Nitrosoglutationa/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Proteína Forkhead Box O1/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Óxido Nítrico/metabolismo , Peroxirredoxinas/antagonistas & inibidores , Peroxirredoxinas/genética , Fosforilação , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Sirtuína 1/metabolismo
3.
Angiogenesis ; 21(2): 237-249, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29299781

RESUMO

Abnormal angiogenesis plays a pathological role in diabetic nephropathy (DN), contributing to glomerular hypertrophy and microalbuminuria. Slit2/Robo1 signaling participates in angiogenesis in some pathological contexts, but whether it is involved in glomerular abnormal angiogenesis of early DN is unclear. The present study evaluated the effects of Slit2/Robo1 signaling pathway on angiogenesis of human renal glomerular endothelial cells (HRGECs) exposed to a diabetic-like environment or recombinant Slit2-N. To remove the effect of Slit2 derived from mesangial cells, human renal mesangial cells (HRMCs) grown in high glucose (HG) medium (33 mM) were transfected with Slit2 siRNA and then the HG-HRMCs-CM with Slit2 depletion was collected after 48 h. HRGECs were cultured in the HG-HRMCs-CM or recombinant Slit2-N for 0, 6, 12, 24, or 48 h. The mRNA and protein expressions of Slit2/Robo1, PI3K/Akt and HIF-1α/VEGF signaling pathways were detected by quantitative real-time PCR, western blotting, and ELISA, respectively. The CCK-8 cell proliferation assay, flow cytometry and the scratch wound-healing assay were used to assess cell proliferation, cycles, and migration, respectively. Matrigel was used to perform a tubule formation assay. Our results showed that the HG-HRMCs-CM with Slit2 depletion enhanced the activation of Slit2/Robo1, PI3K/Akt, and HIF-1α/VEGF signaling in HRGECs in time-dependent manner (0-24 h post-treatment). In addition, the HG-HRMCs-CM with Slit2 depletion significantly promoted HRGECs proliferation, migration, and tube formation. Pretreatment of HRGECs with Robo1 siRNA suppressed the activation of PI3K/Akt and HIF-1α/VEGF signaling and inhibited angiogenesis, whereas PI3K inhibitor suppressed HIF-1α/VEGF signaling, without influencing Robo1 expression. In the HRGECs treated with Slit2-N, Slit2-N time-dependently enhanced the activation of Robo1/PI3K/Akt/VEGF pathway but not HIF-1α activity, and promoted HRGECs proliferation, migration, and tube formation. The effects induced by Slit2 were also abolished by Robo1 siRNA and PI3K inhibitor. Taken together, our findings indicate that in a diabetic-like environment, in addition to mesangial cells, autocrine activation of Slit2/Robo1 signaling of HRGECs may contribute to angiogenesis of HRGECs through PI3K/Akt/VEGF pathway; therefore, Slit2/Robo1 signaling may be a potent therapeutic target for the treatment of abnormal angiogenesis in early DN and may have broad implications for the treatment of other diseases dependent on pathologic angiogenesis.


Assuntos
Diabetes Mellitus/metabolismo , Células Endoteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Glomérulos Renais/metabolismo , Neovascularização Patológica/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Células Endoteliais/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Glomérulos Renais/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Proteínas Roundabout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA